Radiometric and Frequency Calibration of EOS-Aura TES Infrared Spectra
 A33A-0121

Helen M. Worden, Reinhard Beer, Kevin W. Bowman, Brendan Fisher, Mingzhao Luo, Gregory Osterman, David Rider, Edwin Sarkissian
Denis Tremblay Jet Propulsion Laboratory, Cal Tech
Raytheon Systems, ITSS

ABSTRACT

TES is an infrared Fourier transform spectrometer on board the EOS-Aura spacecraft. The first on-orbit interferograms were acquired August 20, 2004. We present the methods for producing calibrated radiance spectra and show initial results for atmospheric nadir and limb spectra. We also show comparisons of TES nadir spectra to Aqua-AIRS spectra, where the AIRS data are taken on the same orbit path about 15 minutes before TES data are taken.

TES on EOS-Aura

TES Spectral Coverage for Ozone and Its Precursors

Complex Calibration:

$C_{t g t}=r\left(L_{t g t}+L_{f o}-L_{c r}+L_{i f m t r} e^{i \varphi_{\delta}}\right) e^{i \varphi} e^{i 2 \pi m v / v_{l}}$
$C=C(v, t)=$ complex spectrum
$L_{t g t}=$ target radiance
$L_{f o}=$ foreoptics radiance
$L_{c r}=$ cold reference radiance
$L_{i f m t t r}=$ interferometer radiance
$r=$ instrument response (radiometric slope)
$\phi_{\delta}=$ phase of interferometer emission
$\phi=$ net optical and electronics phase
$\phi_{\delta}=$ phase of interferometer emission
$2 \pi m v v_{l}=$ sampling phase $\left(v_{l}=\right.$ laser freq.)

(A)

L1B Calibration Error Estimates
A) The imaginary mean is a measure of the residual radiance remaining in the imaginary term after complex calibration. Ideally, this should be unbiased with RMS close to the noise level. Variations from this indicate systematic calibration errors.
B) Spectral averages of estimated NESR (Noise Equivalent Spectral Radiance)

Frequency "compression" ($\delta v / v$) due to off axis angles.

[^0]TES detector array with respect to the
optical axis, showing off-axis geometry

Comparisons ofTES and AIRS observed brightness temperature where TES radiances have been convolved with the AIRS spectral response function (SRF)

* Initial calibration results show reasonable agreement with AIRS data.
* Further algorithm refinement is in progress to reduce systematic errors due to:
- phase alignment of calibration and target scans
- time dependence of instrument response and offset - view dependence, if detected.
* Beta release for TES L1B data will be in early 2005 at the Langley DAAC:
http://eosweb.larc.nasa.gov/

[^0]: TES spectral response "line shape" - measured vs. modeled.

