
ABSTRACT

The TES retrieval algorithm estimates an atmospheric profile by
simultaneously minimizing the difference between observed and
model spectral radiances subject to the constraint that the solution
is consistent with an a priori mean and covariance. Consequently,
the retrieved profile includes contributions from observations with
random and systematic errors and from the prior. These
contributions must be properly characterized in order to use TES
retrievals in data assimilation, inverse modeling, averaging, and
intercomparison with other measurements. All TES retrievals
include measurement and systematic error covariances along with
averaging kernel and a priori vector. We illustrate how to use
these TES data with a couple of examples from a simulated CO
source estimation and comparison of TES ozone retrieval to the
GEOS-CHEM chemical transport model.

TES Data for Assimilation, Inverse modeling and intercomparison

Kevin W. Bowman, D.B. Jones1, J. Worden, Q. Li,  S. Sund-Kulawik, H. Worden, G. Osterman, A. Eldering,
M. Luo, M. Lampel2, D. Jacob3, D. Rider, B. Fisher

Jet Propulsion Laboratory-Cal Tech, 1University of Toronto, 2Raytheon Systems-ITSS, 3Harvard University

http://tes.jpl.nasa.gov

 A33A-0127
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Characterization of TES retrievals
If the  estimate of a profile is spectrally linear with respect
to the true state then the retrieval may be written as
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There are 3 errors included

       in the analysis:

Measurement noise:

Cross-state error:

Systematic error from non-retrieved species
Spectroscopy, etc.:

A retrieval characterized by the averaging kernel
and constraint vector can be used to
quantitatively compare model fields directly TES
vertical profiles:

If the model fields are defined as 

yti,m = F(xt ,ut , t) where 
x :  model fields
u :  model parameters, e.g, sources and sinks
F :  model operator, range is vmr for trace gases

Then the model TES retrieval for trace gases is 

ŷti,m = yt ,ci +At
i (lnF(xt ,ut , t)− yt ,ci )

This TES ozone retrieval was taken
From an observation near the island of Sumisu-jima
off the coast of Japan on Sept 20, 2004.
The green profile was calculated by substituting
The natural logarithm of a GEOS-CHEM model field
(2x2.5 degrees) was substituted into the model TES
retrieval equation.

Both the GEOS-CHEM model and the TES retrieval
indicate elements amounts of ozone in the upper
troposphere, consistent with Asian pollution outflow
into the Pacific. However, the
TES retrieval suggests a greater amount of ozone
relative to GEOS-CHEM.  Understanding the
differences between the two requires additional
statistics within the grid.

The error covariance for the difference between
model retrieval and the TES retrieval is 

Ŝ = At
i (E[((yti − lnF)− yti − lnF)2 ] At

i( )Τ + Sni + Scsi + Ssi

Supplied by TES L2
processing

Supplied by user

The averaging kernel is the sensitivity of the 
Retrieved profile to changes in the true state and
Is composed of 3 matrices: 

At
i =

∂ŷti

∂yti
=MiGz

iKy
i

 yt
i =Mz ti ,       M : ° M → ° N ,   M < N

Mapping (interpolation) matrix:

Mapping (interpolation) and the averaging kernel

The mapping matrix projects the retrieval coefficients 
to the forward model levels. This mapping represents 
a “hard” constraint on the estimated profile, .i.e,
restricts the profile to a subspace defined by M.

Gain matrix:

Gz
i = KyM( )Τ Sn−1KyM + Λ( )−1 KyM( )Τ Sn−1

The gain matrix projects the TES observed radiances 
o the TES estimate profiles based on the TES spectral 
Jacobian, hard constraints, and prior or “soft” constraint Λ.

The averaging kernel is supplied on the forward model 
Pressure grid, which is nominally 87 levels where each level
Is approximately 1.5 km.  The degrees of freedom for signal 
Dofs for any TES retrieval is significantly less than 87.  So, why
Do we store them on such a fine scale? 

•Averaging kernel on a fine pressure scale
accommodates a variety grids, e.g., balloons,
tropospheric models, stratospheric models, column
trace gas observations
•Averaging kernel can be reduced without loss of
information but not vice versa
•Subsequent changes in the retrieval, e.g., changes in
M, do not change file format.

Examples of mapping:

 MTrop : ° P → ° N Tropospheric CTM, most levels in
troposphere. few in stratosphere. 

ŷti,m = yt ,ci +At
i (MTrop lnF(⋅)− yt ,ci )

 Mc : ° → ° N Fixed profile mapping

 hΤ : ° N → ° Column operator

ĉt
i = hT ŷti = hT yt ,ci + hTAt

i (ln(Mcα )− yt ,ci )

The observation operator can be written as 

Ht (xt ,ut , t) = yt ,ci +At
i (lnF(xt ,ut , t)− yt ,ci )

From the standpoint of the model, the
observations are now expressed in the standard
additive noise model

ŷti = H(xt ,ut , t)+ ε

Spectral Jacobian matrix: Ky =
∂L
∂y
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• FF = Fossil Fuel + Biofuel
• All sources include contributions
  from oxidation of VOCs
• OH is specified
• Use a “tagged CO” method to
  estimate contribution from each 
  source
• Temporal evolution of emissions 
  is known.

Assimilation of TES data for use in model parameter and field estimation 

Characterization of TES retrievals is critical for applications where
TES data is assimilated into a model such as model parameter and
field estimation.  This approach several advantages:
•The relationship between the true state and estimated profile is
linear. The nonlinearity between the prior and the true state has
been removed
•The effects of the mapping, constraint matrix and vector, and
spectral sensitivity have been incorporated in the characterization.
•Tens of thousands of spectral channels have been reduced to a
much smaller geophysical parameter set.

Application to model parameter estimation: CO source estimation

We investigate the impact of the averaging kernel on model CO source 
estimation with simulated TES retrievals.  In the CO estimation problem, 
The model CO sources are parameterized according to a geographical 
Aggregation as shown in Figure 1. Simulated TES retrievals are used to 
Estimate these CO source strengths relative to a background or prior 
Knowledge of those strengths.  This estimate is calculated by minimizing
The following cost functions with and without the averaging kernel: 

CAK (u) = ŷ −H(x,u, t) Sε−1
2
+ u − ua Sa−1

2

CwoAK (u) = ŷ − lnF(x,u, t) Sε−1
2
+ u − ua Sa−1

2

CO source state vector:
•CHEM-background chemistry
•NAFF-North American fossil fuel
•EUFF-European fossil fuel
•AFBB-African biomass burning
•ASFF-Asian fossil fuel
•ASBB-Asian biomass burning
•RWBB-rest-of-the-world biomass burning
•RWFF-rest-of-the-world fossil fuel
•SABB-South American biomass burning

Figure 1: CO source aggregation. Taken from Jones, D. B. A., K. W. Bowman,
 P. I. Palmer, J. R. Worden, D. J. Jacob, R. N. Hoffman, I. Bey, and R. M. Yantosca, 
Potential of observations from the Tropospheric Emission Spectrometer to constrain continental 
sources of carbon monoxide, J. Geophys. Res., 108(D24), 4789, doi:10.1029/2003JD003702, 2003. 

Figure 2: Estimate of CO aggregated sources with
And without the averaging kernels.  

Neglecting the averaging kernels has two effects on the CO
source estimate:

1. The CO source estimates are grossly inaccurate
2. The number of iterations to convergence increased by a

factor of 2 with increase numerical instability.

On the other hand, proper use of the averaging kernel shows
The potential of TES CO retrievals to constrain estimates of 
Continental source of carbon monoxide. 

Conclusions
•TES Level 2 products will include, along with retrievals of atmospheric
trace gases, averaging kernels, constraint vectors, and error covariance
matrices on the forward model levels
•These tools can be used profitably by atmospheric sciences community for
comparison of TES retrievals to in-situ sonde measurements, aircraft and
satellite measurements, along with comparison to chemical transport
models.
•These techniques enable assimilation systems to properly incorporate TES
data by characterizing the constraints and biases used in the retrieval
without resorting to expensive and non-linear radiative transfer models


