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Tropospheric Emission Spectrometer: Retrieval
Method and Error Analysis
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Pat Brown, Curtis Rinsland, Michael Gunson, and Reinhard Beer

Abstract—We describe the approach for the estimation of
the atmospheric state, e.g., temperature, water, ozone, from
calibrated, spectral radiances measured from the Tropospheric
Emission Spectrometer (TES) onboard the Aura spacecraft. The
methodology is based on the maximum a posteriori estimate,
which mathematically requires the minimization of the difference
between observed spectral radiances and a nonlinear model of
radiative transfer of the atmospheric state subject to the con-
straint that the estimated state must be consistent with an a
priori probability distribution for that state. The minimization
techniques employed here are based on the trust-region Leven-
berg-Marquardt algorithm. An analysis of the errors for this
estimate include smoothing, random, spectroscopic, “cross-state,”
representation, and systematic errors. In addition, several met-
rics and diagnostics are introduced that assess the resolution,
quality, and statistical significance of the retrievals. We illustrate
this methodology for the retrieval of atmospheric and surface
temperature, water vapor, and ozone over the Gulf of Mexico on
November 3, 2004.

Index Terms—Atmospheres, constituents, inverse methods, re-
mote sounding, temperature.

1. INTRODUCTION

HE Tropospheric Emission Spectrometer (TES) [1],
launched on July 2004 on the EOS Aura mission, will
provide the first global view of tropospheric ozone. The in-
vestigation will focus on mapping the global distribution of
tropospheric ozone and on understanding the factors that con-
trol ozone concentrations.
TES is an infrared, high-resolution, Fourier transform
spectrometer covering the spectral range 650-3050 cm™!
(3.3-15.4 pum) at a spectral resolution of 0.1 cm™! (nadir
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viewing) or 0.025 cm~! (limb viewing). TES observed spectral
radiances are used to estimate the atmospheric state, which
includes vertical distributions of trace gases along with related
atmospheric and surface parameters such as effective cloud op-
tical depth and surface emissivity. The relationship between the
state of the atmosphere and observed spectra can be described
by a nonlinear forward model of the radiative transfer from
the atmosphere through the instrument. The atmospheric state
is estimated by minimizing the L? norm difference between
the observations and forward model subject to constraints on
the first and second order moments of those parameters [2] by
means of a constrained nonlinear least squares fitting procedure
(alternative approaches have also been explored [3], [4]). A
critical outcome of this process is a detailed characterization
of the smoothing, random, and systematic errors for the target
parameters along with important retrieval metrics such as
degrees of freedom (DOF), information content, and vertical
resolution. However, for the data user to fully understand the
nature of the product and its errors, it is necessary to understand
the details of this process.

II. RETRIEVAL METHODOLOGY
A. Additive Noise Model

Measured radiances in TES can be related to a forward model
through the following additive noise model:

y=L(x,b)+¢€ (1)

where y € RM (a real vector of length M), is the calibrated,
measured spectrum and x € RY is the “full” state vector, and
b is a vector of nonretrieved forward model parameters. A state
vector specifies the atmospheric state and instrumental parame-
ters that influence the measurement. We will use the term full
state vector to indicate the set of parameters required by the
forward model to simulate a measurement to the necessary ac-
curacy, and the term retrieval state vector or simply retrieval
vector (usually z) to indicate a reduced resolution state of the
full state vector that will be estimated. The remaining elements,
which are encapsulated in b, are predetermined, e.g, surface
height, geometry and trajectory of the spacecraft, etc. The for-
ward model operator L : RY — RM: is a discretized version
of the equation of radiative transfer that simulates the spectrum
resulting from the propagation of radiation through the atmos-
phere from the Earth to the spacecraft. The noise term e € RM
is assumed to be zero mean, Gaussian noise with the error co-
variance, S, = FElee’] where E[] is the expectation operator

0196-2892/$20.00 © 2006 IEEE



1298

[5]. Operationally, the spectral error covariance is assumed to
be diagonal with elements [S.];; = o7.

1) Forward Model: The TES forward model is described in
detail by [6]. The radiative transfer is referenced with respect to
the logarithm of pressure. For nadir viewing, surface tempera-
ture and emissivity along with clouds are included in the forward
model. In the limb view, the trace gas distribution is modeled
as spherically symmetric. The TES instrument line shape is ap-
plied to the modeled spectra producing a spectral resolution and
spacing of 0.06 cm ™1 for nadir spectra, and 0.02 cm~? for limb
spectra. In addition the spectra in apodized with Norton—-Beer
medium apodization [7], [8]. The whole spectrum is not ex-
ploited for the retrieval. Spectral windows are carefully selected
in order to reduce the computational load and minimize system-
atic errors from nonretrieved atmospheric parameters. Objec-
tive methods for microwindow selection have been discussed by
[9]-[12]. Candidate regions are selected for each species based
on known absorption and interferences. The information content
H for each spectral element in the interval is evaluated given an
expected a priori covariance, data error, constraints, and atmo-
spheric Jacobians, i.e., following Shannon [13]:

1 |Sal
H=>lo . (2
9 &2 1S4 ]
where
S, = E[(x —x4)(x —x,) ] 3)
is the a priori covariance matrix, x, = F[x] is the a priori

vector, and S is a posteriori covariance matrix, which is defined
in (44). Spectral elements are selected to maximize the informa-
tion. We have used the approach described in [12].

The spectral size of the microwindows ranges from a few
wavenumbers to one hundred or more wavenumbers, depending
upon the species to be retrieved. In order to achieve the max-
imum reduction in computing time, both the calculated and
observed spectrum are filtered with the Norton—-Beer medium
apodization [7]. This reduces the ringing of lines, and thus the
width of the spectrum required.

Different microwindows provide information about different
altitude regions and are different for nadir and limb views. Gen-
erally, strong lines are used for high altitudes, while weak lines
will give more information at low altitudes.

2) Measurement Error: The measurement error vector € in
(1) comprises both random sources (primarily detector noise)
and systematic sources from uncertain forward model parame-
ters. Only the error covariance matrix of the random error is used
in the retrieval. The effect of systematic errors on the retrieval
are assessed a posteriori as discussed in Section V. This ap-
proach is taken to maintain a diagonal covariance matrix, which
reduces computational processing time. Noise equivalent spec-
tral radiance (NESR) has been obtained from the preflight lab-
oratory calibration of TES [14], and is summarized in Table I.
Table I gives the bandpass frequency average of the modeled
NESR expected for clear sky nadir views with a surface tem-
perature around 300 K (this will tend to slightly overestimate
noise from polar measurements) and for moderate Norton—Beer
apodization (which includes an additional multiplicative factor
of 0.665).
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TABLE 1
BAND AVERAGE NESR VALUES OBTAINED FROM PREFLIGHT CALIBRATION
TES Filter ID | Frequency Range Nadir NESR
cm—1! nWem~2 sr—l/em—1
16 pixel average
2BI 650-900 133
1B2 950-1150 17
2A1 1100-1325 17
1A1 1900-2250 23

B. Constrained Least Squares Estimation

Given the additive noise model of the measured radiances,
we find an estimate z of the retrieval vector z by minimizing the
difference between the observed and the forward model spectral
radiances, subject optionally to a quadratic constraint. That is,
we minimize the cost function

C(z) = ly = L(x))llg- + llz — zll3 @
where the full state vector is restricted to subspace defined by
the interpolation or mapping x = 9%(z). The second quadratic
term is optional, and can be used to provide a constraint on the
solution if the problem is ill-posed or ill-conditioned. The state
vector z. can be regarded as x, = E[x], the expected state
of the atmosphere in the absence of a measurement, i.e., the
a priori, and A as the inverse of the covariance of the uncertainty
S, = E[(x — x4)(x — X,) '], or the term can just be regarded
as an ad hoc constraint providing e.g., smoothness.

Minimization proceeds iteratively from an initial guess by
means of an appropriate nonlinear least squares solver until con-
vergence to obtain the retrieval vector from 2 = min,(C(z))
and the retrieved full state vector from x = 9%(z). In practice
the mapping is linearised as described in Section III-A.

When the constraint term is based on an a priori Gaussian
probability density function for the state, the constrained least
squares estimate becomes a maximum a posteriori (MAP) esti-
mate. If the constraint term is absent, and the only constraint on
X is provided by the mapping, the estimate is a maximum like-
lihood (ML) one. In the latter case, the second quadratic term in
(4) is dropped.

III. CONSTRAINTS
A. Mapping

1) Mapping Between Retrieval and Full State Vectors: The
discretization of the full state vector is chosen to be fine enough
to accurately calculate the equation of radiative transfer. How-
ever, for the purposes of a retrieval, this grid may be too fine.
A mapping is applied that restricts that solution space of the
retrieval to a resolution that is more representative of TES sen-
sitivities but still can represent vertical atmospheric variability
[15]. The retrieval vector, z € RN /, is related to the full state
vector by a mapping M : RN — R so that x = M(z). In
general, N < N. For simplicity, we shall restrict our attention
initially to linear maps so that

X = Mz. (®)]
The full state vector is expressed as a linear combination of basis
vectors m; (the columns of M) weighted by retrieval parame-

ters z;. The mapping matrix is typically a piecewise linear inter-
polation function of pressure though the matrix could represent
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any general linear transformation, e.g., singular value decom-
position (SVD), wavelets, etc. It is important to note that (5) is
restriction on the full state vector for the retrieval, not for the
actual atmospheric state.

In order to calculate an initial guess of the atmospheric state,
an inverse mapping from a full state vector to a retrieval vector
is needed

z = M*x. (6)

If the rank of M is N’, then the inverse mapping is chosen to be
least-squares inverse of the map given by

M*=M"M)"!M". 7

The Jacobian of the retrieval state vector with respect to the
radiances is expressed as
OL(M
K, - M) ®)
0z

The chain rule can be applied to (8) in order to relate the retrieval
Jacobian to the full-state Jacobian

OL OL 0x

92 " ox oz ©)
or

K. = K,M. (10)

The full-state Jacobian is calculated in the forward model and
then mapped to the retrieval Jacobian through (10) for use in the
retrieval algorithm.

For several atmospheric species, e.g., ozone, H2O, the re-
trieval of the natural log of the volume mixing ratio (VMR) is
preferable. In this case

(11)

where q is a state vector whose elements are the volume mixing
ratio of the atmospheric state as a function of pressure. The
nonlinearity introduced by the natural log has no impact on the
linearity of the mapping, but does have an impact on the error
analysis.

X =Inq= Mz

B. A Priori Constraints

A priori is a description of what is known or believed about
the state before the measurement is considered. Typically it
may comprise a climatological estimate of the state plus some
measure of its uncertainty, most conveniently expressed as a
covariance matrix. This covariance matrix is calculated from
chemistry and transport models (CTM), sondes, and metero-
logical assimilation systems. For temperature and H»O, the
atmospheric profiles are calculated from the GEOS global
transport model maintained at NASA’s Global Modeling and
Assimilation Office (GMAO). For GEOS-4, these profiles are
discretized on 1.25° x 1.00° (Lon x Lat) grid. The initial guess
for temperature and water take the eight closest profiles in
latitude, longitude, and universal time coordinate (UTC) and
interpolates them to the location and time of the TES footprint.
Surface temperature initial guess is arrived at by the same
process using the GMAO skin temperature fields. Initial guess
atmospheric profiles for all other chemical species are deter-
mined using MOZART [16] model results and are interpolated

1299

to the TES footprint in a similar manner. In addition, ad hoc
smoothness can be imposed by adding a quadratic form to the
cost function that penalizes the first or second difference of the
profile [17], [18] or by defining correlations between elements
of the profile that decay exponentially as a function of distance
[19].

Two approaches are used to calculate constraints. The first
approach fits the row of a climatological covariance matrix cal-
culated from a global CTM, e.g., MOZART, to an exponentially
declining function

[S.,]; = Bexp(—a(Inp; — Inp)
where « and ( are determined by

(&,3)==g§§IHSAi—-ﬂeXPC—aﬂnpi—lnpNV (13)

where p is pressure, ¢ is a pressure level index, a > 0 scales
the rate of decrease, and (3 adjusts the overall magnitude of the
covariance. This approach permits the construction of a con-
straint matrix that includes most of the atmospheric variability
but avoids numerical problems such as singularity and physical
problems such as nonphysical correlations between troposphere
and stratosphere that can arise from CTMs.

The second approach is based on an altitude dependent
Tikhonov constraint where a combination of first and second
derivative norm constraints are imposed on a retrieved vertical
profile. However, the strength of the constraints relative to the
measurement are allowed to vary as a function of altitude [20].

12)

IV. NUMERICAL APPROACH

A. Structured Least Squares

There is a wide range of numerical methods for minimizing
nonlinear least-squares functions such as the cost function in
(4) [21], [22]. The basic methods available in the retrieval are
the Gauss—Newton method and the Levenberg—Marquardt (LM)
method. Both methods minimize the cost function in (4) by iter-
ative minimization with respect to the retrieval vector. We define
a step in the retrieval vector as

(14
The Gauss—Newton method consists of iteratively minimizing
the cost function linearized about z;. For the MAP cost func-

tion, a Gauss—Newton iteration can be calculated by solving the
following equation [23]:

0z = 241 — 2;.

K'é6z = 6y’ (15)

where

STV?K, (i
K = ( A1/2( )) (16)
and
—S_l/Z(y — L(Mz')>

by’ = € ¢ . 17
Y < AV (7 z,) (1n

The Jacobian, K, in (16) is defined in (8) and related to the full
state Jacobian in (10). A numerically robust method for solving
(15) is through the factorization of the augmented Jacobian K’
into the QR decomposition

QRéz = by’ (18)
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where Q € RM*M ig an orthogonal matrix and R € RM*N
is an upper triangular matrix. The orthogonal matrix can be in-
verted implicitly and the retrieval vector can be calculated by
back substitution from R [22]. The forward model is evaluated
by the updated full state vector x;11 = Mz;; and (15) is
solved again until convergence.

Alternatively, the least squares solution to (15) may also be
written as

bz = (K'TK' ) 1K'T sy’ (19)

or
Zit1 = Z; + (A + K?S:lKi)_l
(KIS 'y — L(Mz,;)] — Alz; —z.]). (20)

Note that the efficiency of the iteration is enhanced if S, is
diagonal, particularly for cases where the measurement vector
is large, as in the case of TES. However, the apodization of
microwindows will introduce off-diagonal elements in S, and
other sources such as calibration may also cause correlations
in the measurement errors. The off-diagonal elements due
to apodization can be calculated. For numerical efficiency,
however, the measurement error covariance is assumed to be
diagonal.

The Gauss—Newton method is satisfactory for small residual
problems [21]. For these problems, the initial guess is in a re-
gion sufficiently close to the solution such that second-order
derivative of the cost function are small. If the initial guess does
not satisfy this condition, then the LM method is used. This al-
gorithm is implemented as a trust-region method [24]. In this
method, the cost function in (4) is minimized subject to the trust
region

I(zi1 = 2) Ry rw < A 1)
The trust region radius A; defines the radius of a hyper-ellipsoid
over which the cost function is considered linear with respect to
the step. An LM step is calculated by solving

(H)e=(7) o
with the QR decomposition or alternatively as
ziv1 =2, + (vWIW + A+ KIS 'K;) !

(K7ST'ly —L(Mz))] - Alzi —z.]) (23)

where the parameter +; is called the LM parameter and W is a
nonzero scaling matrix. The LM parameter is varied from step
to step according to the strategy described by Moré [24]:

1: Find v; such that the step size is within the
trust region radius.
2: Check that C(z;41) <

function has increased,

C(Zq') .

then reduce the trust region

If the update cost

radius and return to step 1.
from (24).
0.01 and

3: Calculate the linearity measure, p,
4: Increase the trust region radius if p >
decrease otherwise.

5: Return to step 1 for next iteration.
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The linearity measure is defined as

1 (l\ﬁ§i+ﬁ|\>2
p= ~ (24)

2 2
|K: 62| ﬁnwi&zl\)
( Ty, ) +2 (—nmn

where 8y; is the residual for the ¢th iteration. This measure
compares the difference between the expected reduction in the
cost function relative under the assumption of a perfectly linear
system to the actual reduction in the cost function. Perfect agree-
ment between the predicted and actual reduction occurs when
p = 1, less reduction than expected for p € (0, 1), greater than
expected reduction for p > 1, and an increase in the cost func-
tion for p < 0.

B. Stopping and Convergence Criteria

Stopping criteria provide a set of sufficient conditions
for which an iterative minimization scheme, such as the
Gauss—Newton algorithm, should terminate. These criteria are
distinguished from convergence criteria in that satisfying one or
more of these conditions do not necessarily imply convergence.
Stopping criteria discussed here are one-point and two-point
criteria, which depend on the current iteration or the current
iteration and the previous iteration, respectively.

1) Sufficient Condition Criteria: The first one-point crite-
rion is the maximum number of iterations

i < Nimax (25)

where ¢ is the iteration number. Clearly, this criterion is a poor
indicator of convergence. However, computational restrictions
require the use of (25). The quality of the retrieval can be as-
sessed afterwards. The second one-point criterion is based on
the cost function in (4)

C(z)
VN

The value of ¢ is usually set to be equal to the normalized vari-
ance of the x? distribution of the cost function in (4). If the
estimates of the covariance of the measurement error are cor-
rect, then continuing to iterate after (26) has been satisfied will
only “fit the noise.” Nevertheless, this condition does not indi-
cate whether a local minimum has been reached and hence does
not test convergence.

2) Tests For Convergence: The following criteria are used in
conjunction to test for convergence [25], [26]:

<1-6. (26)

s
|| | ) < 27
1+ C(z) ve &7
zi — zi—1ll,
——= </e (28)
L+ ||zl
C(z;) — C(zi-
C() ~ Clai-n)| 09)
14+ C(z;)
where € is the threshold value. Equation (27) insures that the
derivative of the cost function, VC(z) = —K'" 8y’ is close to

zero, which is a necessary condition for a local minimum. Equa-
tions (28) and (29), which are two-point stopping criteria, check
that the fractional change in the state vector and cost function are
going to zero. The denominator is augmented by “1+4” in order
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to avoid a divide-by-zero situation. The value of the threshold is
based on the accuracy of the Jacobian calculation. These three
condition must be simultaneously satisfied in order for the iter-
ations in the minimization algorithm to terminate.

V. ERROR CHARACTERIZATION
A. Linear Retrieval

If the estimated state calculated from (4) is “close” to the
actual state, then the estimated state can be expressed in terms
of the actual state through the linear retrieval [2]

X =Xc + Aua(x = X.) + MG.n + Y MG.Kj,(b'-b))

(30)
where M is the mapping matrix defined in (5), n is the spectral
noise vector defined in (1), x is the full state vector of the actual
state, and x, = Mz, is the constraint vector. The vector b is
the true state for those parameters that also affect the modeled
radiance, e.g., concentrations of interfering gases, calibration,
etc. The vector b, is the corresponding a priori values for the
vector b. The Jacobian, K;, = 9L/0b, describes the depen-
dency of the forward model radiance, L, on the vector b. The
G, is the gain matrix, which is defined by

0z Tq-1 —1-Tq-1

G, = o= (KzSn KZ~|—AZ) K.S; .

The retrieval Jacobian, K, is defined in (8). Equation (30) is

a valid approximation to the minimization of (4) when the esti-
mate is close to the true state

€19

K,[x — %] ~ L(x,b) — L(%, b). (32)

The averaging kernel matrix or resolution matrix, A,, =
0x/0x is the sensitivity of the retrieval to the true state of the
atmosphere and is computed by the following equation:

0Ox 0x 0z 0L

The retrieved state vector may be a combination of several
different atmospheric and surface parameters, e.g., surface tem-
perature, atmospheric temperature, and water vapor. In this case,
it is useful to quantify the effect of jointly retrieved parameters
on a given state, e.g., the effect of the retrieval of temperature
on water vapor. For jointly retrieved parameters, the averaging
kernel matrix maybe partitioned into submatrices that describe
the sensitivity of a particular retrieved state, e.g, water vapor, to
the perturbation of another true state, e.g., temperature

_0x;

T ox;

where ¢ is an index for a subset of the state vector, e.g, vertical
water vapor profile, and 7 is the index to another subset of the
state vector, e.g., vertical temperature profile. Equation (30) can
be modified with an additional “cross-state” term to be

Q
X =x!+A;;(x? —xI)+ Z A, (x'—x})+error terms (35)
i=1,i#]
where @ is the number of components of the state vector
associated with different surface and atmospheric parameters.

(33)

A

(34)
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The “error terms” in (35) are the random and systematic errors
in (30).

B. Error Analysis of Linear Retrieval

1) Retrieval Covariance: Equations (30) and (35) becomes
the basis for the calculation of the second-order statistics of the
retrieval and its error. The mean of the estimate is simply

= E[%]. (36)

The estimate will be unbiased, i.e., E[x] = F[x], if x. = E[x],
b! = E[b’], and E[n] = 0. The covariance of the retrieval for
the jth atmospheric parameter, i.c., Sy, = E[(X; — %x;)(X; —
%;)T] may be written as a sum of the following covariance
matrices:

Wl

Sk, = SI + 8%, + Sy + Says (37)
where the smoothing covariance is
SI = A;;Sx,Aj; (38)
and the “cross-state” error covariance is
Q
Sl.= > AiSx(Ai)" (39)

i=1,i#j
where we have assumed E[x;x;] = 0. In addition, the measure-
ment error covariance is

S, = MG.S.GM" (40)

and the “systematic” error covariance is

Sus = »_ MG.K} S} (MG.Kj,)". (41)
K2

The right-hand side of (37) is composed of four terms.
The first term, the so-called smoothing term [2], results from
applying constraints to the estimate of retrieval state vector.
These constraints can be a combination of “mapping” or “hard”
constraints (e.g., representing the profile on a coarse pressure
grid via the mapping described in Section III-A), or “soft”
constraints (e.g., adding a quadratic penalty function to (4)
with a constraint matrix described in Section III-B) in order to
ensure an acceptable regularization. Physically, the smoothing
error describes the uncertainty due to un-resolved fine structure.
The second term is the so-called “cross-state” error covariance
that describes the effect of other jointly retrieved states on a
particular state. This term disappears if the entire retrieval is
considered or the term is moved into the systematic error if
only one atmospheric parameter is retrieved. Nevertheless,
if one is only characterizing some subset of an atmospheric
parameter, e.g., tropospheric ozone, then the cross-state is a
useful term to characterize the impact of the rest of the set
of atmospheric parameters on the retrieved state, e.g., strato-
spheric ozone. The third term (measurement error covariance)
transforms the random instrument spectral error covariance to
an error on the state vector. The fourth term transforms the
error covariance from forward model parameters to an error on
the retrieved state vector. The systematic errors that have been
considered are errors from previously retrieved atmospheric
trace gas species, atmospheric temperature, surface parameters
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(surface temperature and emissivity), and spectroscopic line
errors. The quantitative description of expected errors for TES
nadir retrievals are presented in [12]. In the case of previously
retrieved parameters, the a posteriori error covariance is used
for S,. We refer to this case as “error propagation.”

2) Error Covariance: The error in the retrieval is defined as

the difference between true state and the estimate
X=X—X.

(42)

The second-order statistics of the error, x, are similar to the
statistics of the retrieval. The mean of the error

(43)

Ml

E[x] =

is unbiased, i.e., X = 0, if x, = E[x], b} = E[b], and E[n] =
0.

Substituting (30) and (35) into (42), the total error or
a posteriori error covariance, Sx, = E[(X; — X;)(%x; — x;) '],
can be written as

Sk, = S? 4+ SI, + S, + Sys (44)
where the smoothing error covariance is
S1=(I-A;;)Sx,(I-Ay)" (45)

and the other terms are the same as in (37).

C. Retrieval Metrics and Diagnostics

Retrieval metrics and diagnostics provide information on the
performance of the retrievals that can be distilled to scalar quan-
tities. In order to determine whether the LM algorithm has con-
verged to a local minimum or detect the presence of systematic
errors, the spectral X2 statistics are calculated

X2 =y —L)5-- (46)
The covariance of the spectral residual, 5y = S, */ *(y —L(x))
is [2]

Elsyoy ] = (STY?KS,KTS7'2 4+ )7t (47)

where S, is defined in (3). Neglecting frequency-correlation
from the apodization and spectral systematic errors, and as-
suming that the inequality

IS71/PKS K ST < || 48)

holds, then the right-hand side of (46) should follow a yx distri-
bution where a standard deviation in the mean of the residual is
0+ (1/M)'/? and the root-mean-square (rms) of 14 (2/M)'/2,
where M is the number of spectral measurement points used in
the retrieval. In addition to the spectral x2, the mean and stan-
dard deviation of the spectral residuals are also an important
retrieval diagnostic.

There are three retrieval metrics that assess the performance
of the retrieval: two are based on the averaging kernel and one is
based a posteriori covariance matrix. The “resolution” of the re-
trieval can be defined from the averaging kernel matrix. The ver-
tical resolution of an atmospheric retrieval, defined on a pressure
(or altitude grid), can be derived from the rows of the averaging
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kernel matrix 0&;/0x which define the relative contribution of
each element of the true state to the estimate at pressure (or al-
titude) level 7. The resolution is then defined as the full-width
half-maximum of the rows of the averaging kernel.

In the case of a MAP estimate, the expected value of the cost
function [(4)] is equal to the number of DOF in the measure-
ment, i.e., the number of elements M in the measurement vector.
This can be divided into two parts, corresponding to the two
terms in the cost function. In particular, the degrees of freedom
for signal (DOFS) d; is defined as the expected value of the
second term [2]

ds = E[(x — x4)7S, 1 (x — %,)] (49)
Note that d, is not defined in the case of a ML estimate, or
when an ad hoc constraint term is used. Degrees of freedom
for signal is a measure of the number of independent pieces of
information provided by the measurement, weighted according
to the signal-to-noise variance of each piece of information. For
example an independent quantity with a s/n ratio of unity would
contribute 0.5 to ds. It can also be thought of as a measure of
the minimum number of parameters that could be used to define
a retrieval vector without loss of information. The information
content, which is defined in (2), is a measure of the reduction in
uncertainty a posteriori. This reduction is based on the ratio of
the error volume of the variability of the state to the a posteriori
variability.

VI. RETRIEVAL AND ERROR CHARACTERIZATION
OF SINGLE NADIR SCENE

A. Strategy

In order to elucidate the mathematics discussed in the pre-
vious sections, we consider a TES nadir retrieval taken on
November 3, 2005, over the Gulf of Mexico at 25.3° latitude
and —95.82° longitude, which is roughly 75 miles southeast of
the U.S.—Mexican border. This retrieval was taken as part of
the Aura Validation Experiment (AVE) Campaign conducted
from Ellington Field in Houston, TX [27]. For this campaign,
the retrievals were taken as part of a special observation mode
known as “step-and-stare” [1].

The strategy for nadir retrievals over oceans scenes is first
to detect the existence of clouds by comparing the difference
in surface brightness temperatures in spectral windows from
867.04 to 897.04 cm~! and from 897.1 to 899.89 cm~! with
predicted surface temperature derived from GMAO metero-
logical data. If this difference exceeds a threshold of 6 K then
a cloud is presumed present. Clouds are modeled as a fre-
quency-dependent effective optical depth localized at a single
pressure level. Over ocean, the effective optical depth spectral
distribution, cloud pressure height, calibration scale parameter,
temperature, water vapor, and ozone are simultaneously esti-
mated using spectral windows contained in the spectral regions
of 990.02-1065.02 cm~! and from 1172.56 to 1317.82 cm™1;
the specific microwindows within those regions can be found
in [12]. For retrievals over land, spectral surface emissivity and
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TABLE 11
VALUES OF CONVERGENCE CRITERIA FOR THE FIRST AND LAST ITERATION
OF THE SIMULTANEOUS ESTIMATE OF CLOUD, CALIBRATION SCALE,
TEMPERATURE, WATER, AND OZONE

iteration | Equation 27 | Equation 28 | Equation 29
1 375 8.0x 107> 34.0
15 0.27 2.2x 1078 | 1.6 x 10~4

surface temperature are included. Subsequent to this estimate,
carbon monoxide is estimated followed by methane. At each
step estimated errors in atmospheric profiles calculated from
the previous step are propagated to the error analysis of the
current step, e.g., the a posteriori error covariance calculated
from the retrieval of water vapor is included in the systematic
error for water vapor in the error analysis of methane.

The constraint vectors for temperature, water, and surface
temperature are computed from interpolating 4 spatial grid
points and one time step of GMAO reanalysis. The constraint
matrix for temperature and surface temperature is calculated
from a MOZART climatology scaled by predicted NCEP
errors. The water vapor constraint matrix is based on the alti-
tude-dependent Tikhonov constraint [20]. The constraint vector
and matrix for ozone was obtained from the MOZART clima-
tology using the fitting procedure outlined in Section III-B. The
carbon monoxide and methane constraint matrices were also
calculated from the altitude-dependent Tikhonov constraint
while their constraint vectors were calculated from MOZART.
For all retrievals, the constraint vector was chosen to be the
initial guess for the trust-region LM algorithm.

B. Retrieval

In this section, we will restrict our attention to the simulta-
neous retrieval of temperature, water, and ozone. The LM algo-
rithm ran for 15 iterations with an initial trust region of Ay =
100. Of those, iterations 3, 5, 8, and 13 were rejected because the
cost function increased. Of those steps that were accepted, the
median value of the linearity measure p [(24)] was .992 which
indicates good agreement between the expected decrease in the
cost function relative to the actual decrease. The trust region
reached a maximum value at A1y = 170, a minimum value at
A4 = 17 and the final trust region value of A5 = 35. The lim-
ited increase in the value of the trust region indicates the pres-
ence of significant nonlinearities in the cost function and a con-
sequent reduction in convergence rate. The values used for the
convergence criteria are shown in Table II for the first and last
iteration. The tolerance used for the criteria was € = 0.000 45.
There was a five-orders-of-magnitude reduction in the change in
the cost function, a three-orders-of-magnitude reduction in the
change of the state vector, and a two-orders-of-magnitude re-
duction in the change of the cost function derivative. The change
in cost function and state vector satisfied the convergence cri-
teria but the cost function derivative did not. The mean and
standard deviation of the normalized residuals were 0.0085 and
1.064, respectively, which is close to the expected variability.
Thus, there appears to be a reasonable balance between the
number of iterations and a strict adherence to the criteria. Nev-
ertheless, further investigation is required to determine the best
threshold for an ensemble of retrievals.
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Fig. 1. Estimate of vertical distribution of atmospheric temperature for 25.3°

latitude, —95.82° longitude, November 3, 2004. The initial guess was taken
as the constraint vector. Error bars are calculated from the square root of the
diagonal of the total error covariance matrix.

TABLE 1II
DIAGNOSTIC VALUES FOR A SUBSET OF RETRIEVED ATMOSPHERIC QUANTITIES

Diagnostic TSUR | TATM | H2O O3 CcO
dofs 0.007 5.6 3.0 3.8 1.2
AvgVertRes (km) NA 7.8 3.1 8.9 10.9
InfContent 0.007 8.2 539 | 9.06 | 0.45
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Fig. 2. Estimate of vertical distribution of water vapor for 25.3° latitude,
—95.82° longitude, November 3, 2004. The initial guess was taken as the
constraint vector. Error bars are calculated from the square root of the diagonal
of the total error covariance matrix.

The temperature retrieval is shown in Fig. 1. The error bars
listed in the figure are the square-root of diagonal of the total
error covariance matrix denoted in (44). The estimate did not
vary significantly from the constraint vector for pressures p €
[50, 150] hPa. However, there was significant deviation from
the prior for p € [200,700] hPa. The estimate cloud top pres-
sure was 779 hPa with an average effective optical depth of
0.78. The effect of the cloud is apparent on the retrieval below
700 mb because the retrieval does not vary from prior and the
error increases significantly relative to the error between 200
and 700 hPa. The surface temperature was estimated at 300.82
where the prior is 300.99. Inspection of the DOFS in Table III
for surface temperature indicates that the retrieval is not sen-
sitive to the surface because of the cloud opacity. The average



1304
10 T ' W
W Initial Guess
W Retrieved g
o ]
& & 7
Tt ]
‘i? 0ok -
12
i1}
e} 4
o
1000k - . B
o p 1077 107 107
VMR
Fig. 3. Estimate of vertical distribution of ozone for 25.3° latitude, —95.82°

longitude, November 3, 2004. The initial guess was taken as the constraint
vector. Error bars are calculated from the square root of the diagonal of the total
error covariance matrix.
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Fig. 4. Error covariance matrix for ozone estimate for 25.3° latitude,
—95.82° longitude, November 3, 2004. Each row of the matrix is plotted with
its corresponding pressure.

vertical resolution for temperature is 7.8 km. However, this reso-
lution varies considerably as a function of altitude. In the region
of p € [200, 700], for example, the vertical resolution was closer
to 2.5 km. From both the reduced error and the increased ver-
tical resolution, we expect the variations from the prior in this
pressure region to be reflective of the actual state. The retrieval
of water vapor is shown in Fig. 2. The average vertical resolu-
tion is 3.1 km and the DOFS is 3.1 with little sensitivity above
150 hPa. The water vapor profile is significantly more dry for
p € [400, 150] hPa and more moist in p € [1000, 400] than the
prior.

The estimate ozone profile is shown in Fig. 3 with an average
vertical resolution of 9.4 km and a DOFS of 3.3. This vertical
resolution is less than the predicted vertical resolution for mid-
latitudes described in [12]. The difference between these reso-
lutions is due to the simultaneous estimate of ozone and tem-
perature using the 10-m band, the presence of clouds, and the
retrieval of a calibration scaling factor. Future retrievals may no
longer need the calibration scale factor and consequently could
use the 6-ym CO2 band for the temperature retrieval, which
should yield vertical resolutions consistent with [12].
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Fig. 5. Diagonals of the total, smoothing, random, and cross-state error

covariance matrices for the ozone estimate.

The retrieval is within the error bars from p € [100, 10] hPa.
Below 100 hPa, the ozone is uniformly less than the prior.
Given the discretization of the full state vector at approximately
1 km/level and a vertical resolution of 9.4 km, the correlations
between state vector elements will be significant as shown in
the error covariance in Fig. 4. The peak error is approximately
0.15 at 100 hPa. This number corresponds to the variance in
the logarithm of ozone. From the approximation In 6z =~ 6z /x,
this error can be interpreted as fractional. Consequently, the
standard deviation at 100 hPa is approximately 39%. As ex-
pected the error is maximal at the pressure level of the thermal
tropopause. Furthermore, this error is strongly correlated with
the error at 30 hPa and anticorrelated with the error at 300 hPa.
The mean percentage error below the thermal tropopause is
approximately 25% with a correlation length of roughly 6 km.
Above the thermal tropopause to 10 hPa, the percentage error
decreases to 7.3% at 23.7 hPa, consistent with the increase in
temperature and a two-orders-of-magnitude increase in volume
mixing ratio as well as an order-of-magnitude increase in
number density. However, the distribution of the error can not
be understood without considering the error terms in (44) that
make up the total error. The standard deviation of the total,
smoothing, random, and cross-state error are shown in Fig. 5.
The total error is dominated by the smoothing error throughout
the ozone profile. Consequently, the reduction in error near
20 hPa is also due to the reduction in climatological variability
of ozone. Nevertheless, to the extent that the a priori covari-
ance matrix, the diagonal of which is shown in Fig. 5, is an
accurate representation of the statistical variability of ozone at
that location, the balance between the smoothing, random, and
cross-state errors are optimal. The greatest reduction in error
is in the upper troposphere near 160 hPa where the percentage
variability of 87% has been reduced to 27%. The overall reduc-
tion in error before and after the retrieval is quantified by the
information content, which was defined in (2). This metric is
based on the ratio of the error volume of the natural variability,
which is described by the a priori covariance matrix, to the
a posteriori error volume, which is described by the total error
covariance matrix. From Table III, the information content
for the ozone retrieval is 9.02 bits, which indicates an overall
reduction in error volume.
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to each delta-response function.

The dominance of the smoothing error indicates that the error
in the estimate is limited primarily by the vertical resolution of
the retrieval. The averaging kernels, which are shown in Fig. 6,
can be defined as the change in an estimated state element given
a change in the true state, i.e., 9[£]; /0x. The width of these av-
eraging kernels are used to define the vertical resolution and are
listed in Table III. For ozone the average is 9.4 km. The columns
of the averaging kernel matrix, which are also called the §-re-
sponse functions, are shown in Fig. 7 and can be equally useful
in interpreting a retrieval. These functions define the change
in the estimated to state in response to a perturbation of the
true state at a specific pressure level. Near 1020 hPa, the cor-
responding delta response function is less than .01, indicating
little sensitivity at the surface due to the presence of moderately
thick clouds. In the troposphere up to the thermal tropopause
(~ 16 km), the §-response functions are broadly unimodal. The
response function at 62 hPa is particularly broad with a width
at half-power of roughly 12 km with the dip in the response
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corresponding to the thermal tropopause. The response func-
tions above the thermal tropopause show the influence on lower
stratospheric ozone on the upper tropospheric ozone estimate.
For the §-response at 23.71 hPa, the fractional change in the
estimate state is 0.11 at 31.6 hPa whereas there is a —0.067
fractional change in the estimate state at 161 hPa. This magni-
tude of this change is equal to the fractional change in the §-re-
sponse at 161 hPa. Consequently, the ozone estimate at 161 hPa
is equally influenced by the true state at 161 hPa and 23.71 hPa
but in opposite sign. This conclusion can be reached equally by
examining the averaging kernel at 161 hPa, which additionally
shows that the maximal contribution to the estimate comes from
around 70 hPa. While the contribution of the ozone at multiple
altitudes to the estimate of ozone at a particular altitude may
make it difficult to interpret the ozone retrieval, these contribu-
tions can be explicitly addressed in formal comparisons with
models or other measurements [28], [29].

VII. CONCLUSION

The methodology used for TES retrievals is based on a
Bayesian framework for which the estimation of the atmo-
spheric state is obtained through the solution of a constrained
nonlinear least squares problem. A stable and unique solution
is dependent on the choice of regularization and a robust min-
imization algorithm. The regularization is latitude-dependent
and can be a combination of altitude-dependent Tikhonov or
climatological constraint matrices as well as a restriction of the
solution to a coarser vertical grid through mapping or “hard”
constraints. The structured least squares trust-region algorithm
combines the higher convergence rates of a Gauss—Newton
solver with the robust conjugate gradient algorithm in a way
that checks the linearity at each step. This algorithm has worked
effectively with state vectors containing hundreds of elements.

Characterization of TES retrievals includes the quantification
of smoothing, random, “cross-state,” and systematic errors. Fur-
thermore, the effect of constraint matrices, constraint vectors,
and mapping on the estimate are characterized through the av-
eraging kernel matrix. Given the dimensionality of these error
covariances and averaging kernels, a number of scalar retrieval
metrics were introduced such as information content, DOFS,
and vertical resolution.

These techniques were applied to the analysis of a single TES
nadir scene taken in the Gulf of Mexico in November 2004. The
fractional error in the tropospheric ozone retrieval was substan-
tially reduced relative to the a priori, particular in the upper
troposphere. Moreover, this reduction is possible even in the
presence of clouds in the field-of-view. However, analysis of the
ozone averaging kernels suggest special care must be taken to
interpret the upper tropospheric ozone profiles due to the influ-
ence of lower stratospheric ozone.
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