Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions

Lin Zhang,1 Daniel J. Jacob,1 Kevin W. Bowman,2 Jennifer A. Logan,1 Solène Turquety,1,3 Rynda C. Hudman,1 Qinbin Li,2 Reinhard Beer,2 Helen M. Worden,2 John R. Worden,2 Curtis P. Rinsland,4 Susan S. Kulawik,2 Michael C. Lampel,5 Mark W. Shephard,6 Brendan M. Fisher,2 Annmarie Eldering,2 and Melody A. Avery7

Received 23 March 2006; revised 6 July 2006; accepted 17 August 2006; published 21 September 2006.

[1] Collocated measurements of tropospheric ozone (O3) and carbon monoxide (CO) from the Tropospheric Emission Spectrometer (TES) aboard the EOS Aura satellite provide information on O3-CO correlations to test our understanding of global anthropogenic influence on O3. We examine the global distribution of TES O3-CO correlations in the middle troposphere (618 hPa) for July 2005 and compare to correlations generated with the GEOS-Chem chemical transport model and with ICARTT aircraft observations over the eastern United States (July 2004). The TES data show significant O3-CO correlations downwind of polluted continents, with dO3/dCO enhancement ratios in the range 0.4–1.0 mol mol–1 and consistent with ICARTT data. The GEOS-Chem model reproduces the O3-CO enhancement ratios observed in continental outflow, but model correlations are stronger and more extensive. We show that the discrepancy can be explained by spectral measurement errors in the TES data. These errors will decrease in future data releases, which should enable TES to provide better information on O3-CO correlations. Citation: Zhang, L., et al. (2006), Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions, Geophys. Res. Lett., 33, L18804, doi:10.1029/2006GL026399.

1. Introduction

[2] The Tropospheric Emission Spectrometer (TES) launched aboard the Aura satellite in July 2004 measures global distributions of tropospheric ozone (O3) together with carbon monoxide (CO) by IR emission [Beer, 2006]. The resulting information on O3-CO correlations offers a test of current understanding of continental outflow and intercontinental transport of O3 pollution. O3 in the troposphere is produced by photochemical oxidation of CO and volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx = NO + NO2). CO is a precursor of O3 and a long-lived tracer of combustion. Observed O3-CO correlations at continental outflow sites and from aircraft have been used in many studies to estimate the efficiency of O3 formation and export [Parrish et al., 1993, 1998; Honrath et al., 2004]. Although simple quantitative interpretation in terms of O3 production is complicated by sampling of air masses with varying background mixing ratios [Chin et al., 1994; Mauzerall et al., 1998], the correlation still provides a valuable test of model predictions of global anthropogenic influence on O3 [Chin et al., 1994; Mauzerall et al., 2000; Li et al., 2002]. We examine here the O3-CO correlations observed by TES in July 2005 and compare them to results from a global 3-D tropospheric chemical model (GEOS-Chem).

2. TES Observations and GEOS-Chem Simulation

[3] TES is a Fourier transform IR emission spectrometer with high spectral resolution (0.1 cm–1) and a wide spectral range (650–3050 cm–1) [Beer et al., 2001]. The Aura satellite is on a polar Sun-synchronous orbit with equator crossing at 0145 and 1345 local time. TES standard products (“global surveys”) consist of 16 orbits of nadir vertical profiles with 5 × 8 km2 horizontal resolution spaced 1.6° along the orbit track. The retrievals have 1–2 degrees of freedom for signal (DOFS) for O3 in the troposphere, and about 1 DOFS for CO. We use the V001 Beta Release data available at the Langley Atmospheric Science Data Center (ASDC). Comparisons of TES O3 with ozonesonde data are presented by H. Worden et al. (Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: Methods and initial results, submitted to Journal of Geophysical Research, 2006). For V001 data, TES O3 profiles agree well with ozonesondes up to 300 hPa but have a positive bias of up to 30 ppbv at higher latitudes in the upper troposphere. Comparisons of TES and MOPITT CO measurements show that TES has a 1%–6% negative bias relative to MOPITT (M. Luo et al., The influences of a priori data and instrument characteristics on nadir atmospheric species retrievals—Comparison of CO retrievals from TES and MOPITT, manuscript in preparation, 2006), but MOPITT has a 5% mean positive bias against in situ validation profiles [Jacob et al., 2003; Emmons et al., 2004]. We use O3 and CO retrievals for July 2005 (14 global surveys) when large O3 pollution enhancements over northern mid-latitudes are
expected. We exclude latitudes >60° where TES measurements are less reliable due to low brightness temperatures.

The TES retrieval determines vertical profiles of logarithms of mixing ratios from the observed radiances using the optimal estimation method [Rodgers, 2000; Bowman et al., 2006]. The retrieved mixing ratio profile \mathbf{x} can be expressed as:

$$\ln \mathbf{x} = \ln \mathbf{x}_a + \mathbf{A} (\ln \mathbf{x} - \ln \mathbf{x}_a) + \varepsilon$$ \hspace{1cm} (1)

where \mathbf{x} is the true profile, \mathbf{x}_a is the a priori constraint from monthly mean profiles simulated with the MOZART model [Brasseur et al., 1998] and averaged over a 10° latitude × 60° longitude grid [Bowman et al., 2006], \mathbf{A} is the averaging kernel, and ε is the spectral measurement error with covariance matrix \mathbf{S}_ε. TES averaging kernels and spectral measurement errors are reported for each retrieved profile as part of the TES data set. We focus our analysis on the 618 hPa retrieval level where TES has good sensitivity for both O$_3$ and CO centered in the middle troposphere, with little influence from the stratosphere. Figure 1 shows typical TES averaging kernels at the 618 hPa level for O$_3$ and CO, centered in the middle troposphere, with little influence from the stratosphere. We filter out retrievals with poor information (diagonal term of the averaging kernel <0.02).

The geographically variable a priori used in the standard TES product helps to regularize the retrieval, but it also contributes structure to the retrieval that is not actually measured. To remove this artifact, we reprocess the TES profiles using a universal a priori:

$$\ln \mathbf{x}' = \ln \mathbf{x} + (\mathbf{I} - \mathbf{A}) (\ln \mathbf{x}_a' - \ln \mathbf{x}_a)$$ \hspace{1cm} (2)

where \mathbf{x}_a' is the universal a priori obtained by averaging the original TES a priori constraint \mathbf{x}_a in the 60°N–60°S band, and I is the identity matrix. The same correction is applied to the model fields. Figure 2 shows the reprocessed O$_3$ and CO concentrations at 618 hPa observed by TES for July 2005, and the corresponding concentrations simulated by GEOS-Chem. Both TES and GEOS-Chem show high values over polluted regions of northern mid-latitudes and biomass burning regions of Africa. Both show a Middle East O$_3$ maximum, whose origin was discussed by Li et al. [2001].

3. Global Distribution of O$_3$-CO Correlations

We determined O$_3$-CO correlations in the TES data by binning the reprocessed observations for July 2005 into $10^\circ \times 10^\circ$ grid cells. Each cell has 20–60 observations from which to derive the correlation. O$_3$-CO linear regressions for these reprocessed fields are obtained with the reduced major axis (RMA) method that allows for error in both variables [Hirsch and Gilroy, 1984]. The slope of the regression line represents the O$_3$-CO enhancement ratio (dO$_3$/dCO).

Figure 3 (left) shows TES and GEOS-Chem O$_3$-CO scatterplots for a $10^\circ \times 10^\circ$ gridbox over the eastern United States where TES observes a strong correlation due to North American outflow to the free troposphere. TES O$_3$ and CO
are positively correlated \(R = 0.5 \) with \(\frac{dO_3}{dCO} = 0.81 \text{ mol mol}^{-1} \). This enhancement ratio is larger than summertime observations of 0.2–0.5 mol mol\(^{-1}\) at surface sites in eastern North America \([Parrish et al., 1993; Chin et al., 1994]\), but consistent with the mean observation of 1.0 mol mol\(^{-1}\) in free tropospheric North American outflow sampled at a mountain top site in the Azores \([Honrath et al., 2004]\). A higher \(\frac{dO_3}{dCO} \) relative to surface air is expected due to near-field ozone production in the free troposphere from exported NO\(_x\) \([Li et al., 2004]\), and has been observed previously for biomass burning plumes over aging times of about a week \([Mauzerall et al., 1998]\). The model in Figure 3 shows a stronger correlation than TES \(R = 0.70 \) but similar \(\frac{dO_3}{dCO} \) (0.63 mol mol\(^{-1}\)). Previous comparison of GEOS-Chem results with surface air observations at a Canadian maritime site (Sable Island) showed \(\frac{dO_3}{dCO} = 0.3 \text{ mol mol}^{-1} \) in July, in good agreement with local observations \([Li et al., 2002]\).

[11] Figure 4 shows the global distribution of \(O_3\)-CO correlation coefficients and \(\frac{dO_3}{dCO} \) enhancement ratios in the TES data for July 2005. Significant positive correlations \((R > 0.4)\) are observed downwind of the eastern United States and East Asia, and over central Africa. These three regions are known to have strong production and export of \(O_3 \) pollution in northern hemispheric summer \([Parrish et al., 1993; Mauzerall et al., 1998, 2000]\). The associated \(\frac{dO_3}{dCO} \) enhancement ratios are in the 0.4–1.0 mol mol\(^{-1}\) range. The
values of 0.6–0.8 mol mol\(^{-1}\) over Africa are consistent with the mean value of 0.7 mol mol\(^{-1}\) in old biomass burning plumes sampled during the TRACE-A aircraft campaign [Mauzerall et al., 1998]. GEOS-Chem shows positive \(O_3\)-CO correlations over the same regions as TES but with stronger correlation coefficients and extending further downwind of the continents, displaying a pollution transport belt at northern mid-latitudes (Figure 4b). Weak negative correlations are found in remote regions where \(O_3\) is delivered mainly by subsidence.

4. Effect of Retrieval Error

[12] We find that the stronger \(O_3\)-CO correlations in GEOS-Chem relative to TES at northern mid-latitudes can be explained by spectral measurement error in the TES data. This error, \(\varepsilon\) in equation (1), is typically 5–15% of the retrieved concentrations. Following standard practice, we did not apply it to the model fields in comparing simulated concentrations to satellite observations (Figure 2) since its expected value is the null vector and its effect becomes negligible when monthly average concentrations are considered. However, it increases the variance of the observations and hence degrades the \(O_3\)-CO correlations. We demonstrate this here by applying a realization of the random spectral measurement error to each model vertical profile used for the correlation analysis, assuming a normal distribution probability for \(\varepsilon\) and no correlation between the errors in the \(O_3\) and CO spectral bands (the retrievals are done in different spectral windows [Worden et al., 2004]). The resulting simulated \(O_3\)-CO correlations show values for \(R\) and \(dO_3/dCO\) that are in good agreement with the values observed by TES, in terms of both magnitudes and patterns (Figure 4c).

[13] We can also add spectral errors to the model fields analytically with some reasonable assumptions. Equation (1) can be written as \(\ln \hat{x} = \ln x' + \varepsilon\), where \(x'\) is the retrieved profile under noise-free conditions. Assuming that spectral measurement errors are small in the conversion from log mixing ratio to mixing ratio, and that the spectral measurement error covariance \(S_\varepsilon\) is the same for all elements, it can be shown that the correlation between any two elements \(\hat{x}_i = [\hat{x}]_i\) and \(\hat{x}_j = [\hat{x}]_j\) of the retrieved \(O_3\) and CO profiles is

\[
Corr(\hat{x}_i, \hat{x}_j) = \frac{Cov(x'_i, x'_j)}{\sqrt{\sigma_{x'_i}^2 + \sigma_{x'_j}^2} \sqrt{\sigma_{x'_i}^2 + \sigma_{x'_j}^2}}
\]

where \(Cov()\) is the covariance, \(\sigma_{x'_i}\) and \(\sigma_{x'_j}\) are the mean values, and \(\sigma_{x'_i}\) and \(\sigma_{x'_j}\) are the standard deviations. The reduction in correlation due to spectral errors is evident from the expression. Results from this approach (not shown) are similar to those in Figure 4c.

5. Conclusions

[14] We have shown that correlations of concurrent tropospheric \(O_3\) and CO measurements from space by the TES instrument provide valuable global information to test model estimates of anthropogenic influence on \(O_3\). Positive \(O_3\)-CO correlation observed by TES in the free troposphere over the eastern United States in July 2005 is consistent with observations from the ICARTT aircraft campaign (July 2004) in terms of both correlation coefficient \(R\) and enhancement ratio \(dO_3/dCO\). Global distributions of \(O_3\)-CO correlations observed by TES for July 2005 are consistent with those derived from a global 3-D model of tropospheric chemistry (GEOS-Chem) and yield similar \(dO_3/dCO\) enhancement ratios in continental outflow regions. However, the model correlations are stronger and more extensive. We show that this can be explained by spectral measurement error in the TES V001 data, degrading the observed \(O_3\)-CO correlations.
The most recent TES V002 data have lower spectral measurement error due to improved radiation calibration [Sarkissian et al., 2005] and warm-up of the TES optical bench (C. P. Rinsland et al., Nadir Measurements of Carbon Monoxide (CO) Distributions by the Tropospheric Emission Spectrometer Instrument onboard the Aura Spacecraft: Overview of Analysis Approach and Examples of Initial Results, submitted to Geophysical Research Letters, 2006). The next release V003 should further reduce the error by improvements of the TES temperature and cloud retrievals.

[15] Acknowledgments. This work was funded by the NASA EOS Program and by the NASA Atmospheric Composition Modeling and Analysis Program (ACMAP). We thank David Parrish, Tom Ryerson, and John Holloway for providing the NOAA WP-3D CO and CO data sets. We thank Glen Sachse for providing the NASA DC-8 CO measurements. We acknowledge useful comments from the two anonymous reviewers.

References

M. A. Avery, Chemistry and Dynamics Branch, NASA Langley Research Center, Hampton, VA 23681, USA. (melody.a.avery@nasa.gov)

Beer, R. K., B. W. Bowman, A. Eldering, B. M. Fisher, S. S. Kulawik, Q. Li, H. M. Worden, and J. R. Worden, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA. (reinhard.beer@jpl.nasa.gov; kevin.bowman@jpl.nasa.gov; annmarie.eldering@jpl.nasa.gov; brendan@tes-mail.jpl.nasa.gov; susana.s.kulawik@jpl.nasa.gov; qinbin.li@jpl.nasa.gov; helen.worden@jpl.nasa.gov; john.worden@jpl.nasa.gov).

C. R. Hudman, D. J. Jacob, J. A. Logan, and L. Zhang, Department of Earth and Planetary Sciences and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. (hudman@fas.harvard.edu; djaoc@fas.harvard.edu; jzhangai@fas.harvard.edu).

M. Lampel, Raytheon Information Solutions, Pasadenada, CA 91109, USA. (mlampel@sisio-mail.jpl.nasa.gov)

C. P. Rinsland, NASA Langley Research Center, Mail Stop 401A, Hampton, VA 23681-2199, USA. (c.p.rinsland@larc.nasa.gov)

M. W. Shephard, Atmospheric and Environmental Research (AER), Inc., Lincoln, MA 02443, USA. (mwshephard@aar.com)

S. Turquety, Service d’Aéronomie, Institute Pierre-Simon Laplace, Université Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris, France. (stu@iaer.jussieu.fr).